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SUMMARY 

A steady-state two-dimensional model of heat transfer and fluid flow was developed to describe Marangoni 
convection in the weld pool. Both the pool surface and the fusion boundary were calculated. The validity of 
the model was verified against an asymptotic solution for Marangoni-convection-induced free surface 
geometry. Two different cases were studied, i.e. a negative surface tension temperature coefficient ay/aTand a 
positive one, and the resultant shapes of the weld pool surface were compared. 
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INTRODUCTION 

In fusion welding the heat source causes a small portion of the workpiece material to melt and 
creates a small pool of molten metal, i.e. the weld pool. Heat transfer and fluid flow in the weld 
pool can significantly affect the microstructure and properties of the resultant weld. So far most of 
the models for heat transfer and fluid flow in weld pools have been based on the 'rigid-lid' 
assumption, i.e. the weld pool surface is flat and is undeformable.'-'* Recently, Zacharia et 
~ 1 . ~ ~ 3  2o have relaxed this assumption and calculated heat transfer and fluid flow in arc weld pools 
using rectangular co-ordinates. The surface geometry of a deformed laser weld pool had been 
shown in an earlier study by Chan et a/." However, nothing was mentioned about how the result 
was obtained, though in the same study rectangular co-ordinates were used for calculating 
Marangoni (i.e. surface-tension-driven) convection in weld pools with a flat, undeformable surface. 
Paul and DebRoy" have also studied the deformation of a laser weld pool due to Marangoni 
convection using rectangular co-ordinates. Recently, McLay and Carey22 have used the finite 
element method to calculate heat transfer and fluid flow in a weld pool. The shapes of the 
deformed pool surface and the pool bottom, which were specified rather than calculated, were 
closely fitted by finite element grids. 

The disadvantages of rectangular and cylindrical co-ordinates for calculating weld pool 
deformation have been described recently by Tsai and Kou ,*~  i.e. the boundary conditions at the 
weld pool surface and hence its deformation cannot be treated properly. Specifically, since neither 
co-ordinates can fit well the free surface of a deformed weld pool, the surface-tension-induced 
normal and shear stresses are difficult to handle. Consequently, the shape of the free surface and 
the surface-tension-induced flow at and immediately below the free surface, where it is most 
significant, cannot be calculated properly. It should be pointed out that the paper of Tsai and 
K o u ~ ~  emphasized the advantages of orthogonal curvilinear co-ordinates in treating a free surface 
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problem involving the weld pool. However, it did not touch upon the main subjects of the present 
paper, i.e. the numerical methods (for heat transfer, fluid flow and surface deformation), the effect 
of the surface tension temperature coefficient ay/a T, how deformed and undeformed weld pools 
differ from each other in their velocity and temperature profiles, and comparison of the model 
against an asymptotic solution. 

The purpose of the present paper is to study Marangoni convection in weld pools with a free, 
deformable surface and the resultant shape or deformation of the pool surface. Since this type of 
deformation can be better studied without the presence of other deformation-causing factors (e.g. 
the arc pressure), Marangoni convection alone will be considered here. Weld pool deformation 
caused by other factors will be presented elsewhere. The workpiece material to be considered here 
is 6061 aluminium alloy, which is essentially aluminium with about 0-6 wt% Si and 1.0 wt% Mg. 

MATHEMATICAL FORMULATION 

A schematic sketch of the physical system is shown in Figure 1. The free surface is the surface of the 
weld pool, while the pool (fusion) boundary is the liquidus isotherm ( TL) in the case of an alloy and 
the melting point in the case of a pure metal. Since our model is intended for various materials, 
including those with temperature-dependent thermal properties, it is impractical to use dimen- 
sionless variables. As such, the governing equations and bqundary conditions will be presented in 
dimensional forms. 

The problem here involves two free boundaries-one is the weld pool surface and the other the 
pool boundary. Since the first free boundary is more critical and more difficult to handle, we 
choose to fit it, rather than the second one, with orthogonal curvilinear co-ordinates. 

The equation of continuity for axisymmetric orthogonal curvilinear co-ordinates 9 and { is 

free surface && 
\ 

boundary 
pool 

T BASE 

ME’fAL ‘/=Ol 

Figure 1. Schematic illustration of weld pool deformation and the co-ordinates used for calculating heat transfer and fluid 
flow in the weld pool. 
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where h ,  and h,  are the metric coefficients for the q- and 5-co-ordinates respectively, r is the radial 
distance, u and w are the velocity components in the q- and t-directions respectively and p is the 
density. The grid system is set up so that the curve of ( = 1 fits the weld pool surface, while the 
straight line of y~ = O  fits the centreline of the pool and the unmelted workpiece, i.e. the base metal. 

The q- and <-components of the equation of motion are24 

P(P(h ,ru2)+-(h lruw)  h1h2r ar a t  a at 

+m,, (3) 

where the components of the stress tensor ai, are 

a1,=2p --+-- 

a2,=2p 

g 2 1  =c12 =.[--( h , d  w -)+-- h , a  (-)I, u 

( hll i; h,wh, 7; )’ 
--+-- (h‘, h yh, 2)’ 

4 %  h2 h, ae hl 

and g,, and gc are the q- and (-components of the gravitational acceleration g. 
The equation of energy is 

P(’(h , ruH)+-(h ,rwH)  a =- a h,r aT a h,r aT 
h1hzr all at ) h , k2r [ & (h, ‘&-) + 2 (h, ) ] ’ (4) 

where H is the enthalpy, k is the thermal conductivity and T is the temperature. The use of the 
enthalpy H in equation (4) allows the heat of fusion to be considered while the position of the 
pool boundary is being determined in the heat flow calculation. This is the so-called ‘enthalpy 
method’. The Boussinesq approximation was used with a thermal expansion coefficient 
pT=i .ox 10-4 oc-1. 

The boundary conditions for fluid tlow are as follows. 

1. At the weld centreline (q=O), 

u=O and e,,=O. 

2. At the free surface (t = 1),25 

w=o,  

ar a y  ac ay 
hlaq aT h,aq ac’ (J,,=--+-- 
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h’(O)= h(R,) = O  and h= H o  -H(r), (6) 
where a21 is the shear stress, C is the concentration of thesurface-active agent, c22 is the 
normal stress, Pa is the ambient pressure, P is the pressure from the equation of motion, h is 
the local weld pool depression and r is the radial distance; h” and h’ are the second and first 
derivatives of h with respect to Y respectively. The constant C,, which is a reference pressure, 
is determined from the following constraint of constant volume: 

2n r w r h  dr = 0, 
0 

(7) 

where R ,  is the radius of the weld pool surface. 
It should be pointed out that variations in the surface tension due to spatial variations of 

the concentration of the surface-active agent, i.e. the second term on the RHS of equation (5) ,  
will not be considered here. This, for instance, can be caused by evaporation of the surface- 
active agent. 

3. At the weld pool boundary ( T =  TL), 

u = w = o .  

The pool boundary is approximated by small steps of finite difference grid that are closest to the 
interface, and both u and w are set to zero along these steps. It should be pointed out that in our 
previous work4-* an effective viscosity much higher than the viscosity of the liquid metal was used 
for the solid metal to reduce both u and w to zero (originally suggested by Patankar26). However, 
since u and w were always set equal to zero wherever T I  TL, the discontinuity in the viscosity did 
not actually enter the computation process. In fact, this effective viscosity approach leads to 
exactly the same condition of u = w = 0 at the weld pool boundary as in the present case. The non- 
orthogonal grids used by Craine16 and Kanouff18 fit the pool boundary and hence allow this 
boundary condition to be handled more accurately. The free surface of the weld pool, however, 
was assumed flat and underformable in both studies. 

The boundary conditions for heat transfer, on the other hand, are as follows. 

1. At the weld centreline ( q = O ) ,  
1 dT 

= 0. -- 

hl  all 

2. At the free surface ((= l ) ,  

k aT -(3Q/na2)exp (-3r2/az), r s a ,  
h,  a t  =i h,(T- T,)+ae(T4- Ti),  r > a ,  

-__ 

where Q is the power delivered from the arc to the workpiece, a is the effective radius of the 
arc, h, is the heat transfer coefficient, T, is the ambient temperature, o is the Stefan-Boltzman 
constant and e is the emissivity. For aluminium alloys the emissivity e ranges from 0.04 for 
shiny surfaces to 019 for heavily oxidized surfaces,,’ and the heat transfer coefficient h,  is 
approximately 8.5 W m ~ OC-’. 2 8  Because of the low melting point and high thermal 
conductivity of aluminium, the surface heat loss is usually small and can be neglected. It 
should be pointed out here that the Gaussian approximation of the heat flux is not valid for 
large surface deformations, as pointed out by Lin and Eagar.29 Although any other type of 
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heat flux distribution can be used in the model, the Gaussian one is still used here in view of 
the relatively small surface deformations involved. 

3. Far away from the centreline (q= l), 
T= T,(z) 

4. Far below the free surface (< =O), 

T= T,(r). 

METHOD OF SOLUTION 

Regarding the last two boundary conditions for heat flow, temperatures T,(z) and T,(r) were 
obtained from the point-heat-source analytical solution of R~senthal.~' This solution, though less 
accurate near the position of the point source because of singularity, is in fact quite accurate in the 
region sufficiently far away from it. For the small heat input (1800 W) in the semi-infinite 
workpiece used in the present study, we found W =  10 mm and H, = 18 mm to be sufficient- 
further increase in these values resulted in no significant changes. For these values of Wand H,, 
T,(z)  varies from 205 to 107°C while To@) varies from 118 to 107°C. 

Regarding the enthalpy model, in the solid and liquid phases the enthalpy is related to the 
temperature through the specific heat of solid, C,, and the specific heat of liquid, C,, respectively. 
In the two-phase region of solid plus liquid (ie. the so-called mushy zone) the enthalpy can be 
expressed as H = Hs(l -fL) + H L f L  as an approximation, where H,, H, andf, are the enthalpy of 
the solid phase at the solidus temperature T,, the enthalpy of the liquid phase at the liquidus 
temperature TL and the fraction of the liquid phase respectively. The liquid fractionf, is a function 
of temperature as described, for example, by the Scheil equation.31 For materials with small 
amounts of alloying elements, such as 6061 aluminium, the liquid fractionf, can be approximated 
as a linear function of temperature varying from zero at Ts to unity at TL, and H ,  can be 
approximated as H , + A H ,  where AH is the heat of fusion for pure aluminium. 

Equations (1H4) were solved using the SIMPLE algorithm with the hybrid scheme to help 
reduce false diffusion.26 Weighted (i.e. based on the lever-arm rule), rather than central, three- 
point differencing was used to minimize errors caused by non-uniform grid spacing. The 
application of the SIMPLE algorithm to weld pool convection has been described elsewhere4 and 
hence will not be repeated here. The physical properties of 6061 aluminium alloy, i.e. the 
workpiece material, used in the calculation are shown in Table I. 

The orthogonal curvilinear co-ordinates in Figure 2 were generated numerically by solving co- 
ordinate transformation  equation^.^' The grids were staggered as illustrated in Figure 2. Briefly, 
the velocity components u and w were calculated at cell boundaries, while all other variables were 
calculated at the cell centres (denoted by the dots). It should be pointed out that after finishing the 
computations, u and w were combined and the resultant velocity vectors (V) shown at the cell 
centres. 

Table I. Physical properties of 6061 aluminium alloy5 

bT = i . o x  ~ O - ~ O C - L  p = 2700 kg m - 3  
ay/aT= -0.35 x 10-3  kgs-Zoc-'  
TL =652'C CL = 1066 J kg- ' "C- ' 

C,= 1066 J kg"C-' 

T, =582"C k,=168 Wm-'"C-'  
T, = 2 5 T  kL=108 Wrn- '"c- '  
AH = 3.95 x lo5 J kg- ' p=l .Ox k g m - l s - '  
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Figure 2. Staggered grid used for computation 

At the beginning the weld pool surface was assumed flat, and heat flow and convection were 
calculated by solving equations (lH4) with their proper boundary conditions until the following 
convergence criteria were met: 

for velocities and pressure, C14new-40'dl<10-3 
CI4"'"I 

I TneW - T0ldlmax I 1 "C for temperature, 

where 1 denotes summation over all grid points, $ denotes u, w or P, and 'max' denotes the 
maximum value of all grid points. The calculated results did not change significantly beyond these 
criteria. 

Then, with the temperature and velocity fields so obtained, an initial guess for C ,  was made, 
equation (6) was solved by the multiple-shooting method or Runge-Kutta method, ,and the LHS 
of equation (7) was computed by Simpson's rule.33 The false position method was used to get a 
new C , ,  and the whole procedure was repeated until the following convergence criterion was met: 

~ c y -  c;y I 10-9. 
This usually insured that the LHS of equation (7) became less than lo-". In this way, the new free 
surface was determined and a new grid could now be generated by solving co-ordinate 
transformation equations with the following convergence criteria: 

I for r and z,  *""" - *Old 

I--+--) a r a r  aZaZ I 
for the orthogonality requirement, 

aqat a ~ a t  max 

where $ stands for r or z. 
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The whole procedure mentioned above was repeated until the following convergence criterion 
was met: 

Ih"'" - ho'dlmax < 10- '. 
A Harris 800 main frame computer was used to carry out the computations and the CPU times 
were of the order of 100 min. 

RESULTS AND DISCUSSION 

Comparison with asymptotic solution 

Since no analytical solutions are known to us for checking the validity of our method of 
solution, it was checked against the asymptotic solution of Sen and David34 for surface 
deformation produced by Marangoni convection in a liquid contained in a rectangular slot. In 
order to do this, our computer program was modified so that the two-dimensional slot flow in the 
study of Sen and David could be considered. Figure 3 shows the comparison for the free surface in 
the case of a slot with an aspect ratio of 0.2 (Figure 9 in Reference 34). The input data are according 
to those of Sen and David, i.e. Marangoni number = 1, capillary number = 5, Reynolds number = 5 
and Biot number = 1. As shown, the agreement is very good, considering the fact that the 
asymptotic solution itself is an approximation. 

Negative d y f d T  

Calculations were made for stationary weld pools of 6061 aluminium produced by a power 
source of 1800 W. The power density distribution was assumed Gaussian with an effective radius 
of 4 mm. 

The surface tension versus temperature relationship shown by the solid line in Figure 4 is for 
pure aluminium35 and was used here as an approximation merely for computational purposes 
rather than for comparison with experimental results. It is however recognized that alloying 
elements in aluminium can have a significant effect on its surface tension, but not as much 

-0.5 0 0.5 

Dimensionless Distance, X 

Figure 3. Surface geometry ofa  fluid between a hot wall (left) and a cold wall (right). Numerical solution from the present 
study (solid line) versus asymptotic solution from Sen and David34 (broken line) 
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on its surface tension temperature coefficient. The solid line in Figure4 has a slope dy/dT 
of -035 x 

The calculated temperature and velocity fields due to the Marangoni convection with 
d y / d T =  -0.35 x kgs-'"C-' are shown in Figure 5(a). The deformation of the weld pool 
surface due to Marangoni convection is such that the weld pool surface is depressed near 
the centre but elevated near the edge. An enlarged view of the velocity field is shown in 
Figure 5(b). 

Figure 5(c) shows a portion of the orthogonal grid mesh in its final form. The grid spacing is 
very fine near the free surface in order to calculate Marangoni convection accurately, i.e. 
5 x mm or 5 pm. Also, the grid spacing is fine near the axis and the edge of the weld pool. 
Similar fine grid spacings near the pool surface have also been used by us for calculating 
Marangoni convection in weld pools with a rigid surface (e.g. References 4 and 7). 

As shown in Figure 5(b), convection is rather strong at  the weld pool surface but quickly 
diminishes below it over a thin layer of about 30 pm. Had the grid spacing been coarser, say 20 pm, 

k g ~ - ~ " C - '  . Like pure aluminium, most pure metals have a negative i?y/dT. 

- _______-  - _ _ _ _ _ _ _ _ _ _ -  ---- a y > O  i_ *<O 

T 

01 I 1 b 

500 1000 1500 

TEMPERATURE, "C 

Figure 4. Surface tension versus temperature relationships used in the present study. The solid line is for pure 
aluminium35 while the broken line is for an imaginary material 

- 1.0 rn/sec 

u 
1.0 MM 

Figure 5(a) 
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0.5 m m  

- 2.0 m/sec 

GRID SYSTEM FOR WELDING PROCESS 

Figure 5. Calculated result for a deformable weld pool with a ayjaT of -0.35 x kgs-'"C-'. . (a) temperature and 
velocity fields; (b) velocity field enlarged; (c) a portion of orthogonal curvilinear grid mesh used for computation. The 

maximum velocity, 1.8 ms-I ,  is located along the pool surface at about 2.2 mm away from the centreline 
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the fluid flow calculation would have been inaccurate. The maximum surface velocity is about 
1.8 m s-' and occurs at around r=2 .2  mm. Since the maximum surface velocity occurs rather 
close to the edge of the pool surface, the surface flow tends to push up the pool surface near the 
edge as it is being forced to stop at the edge. 

In order to see the effect of weld pool surface deformation on heat transfer and fluid flow in the 
weld pool, the temperature and velocity fields in a similar weld pool but with a non-deformable 
surface are shown in Figure 6. As can be seen by comparing with Figure 5(a), the results are quite 
similar. 

It should be mentioned that because of the rather high surface velocities, the Reynolds number 
might be high enough to make the flow unsteady to  disturbance^.^^, 37 In this respect the 
calculated velocity fields might not be exactly accurate in the quantitative sense. 

Positive ay/dT 

deformation of the weld pool surface, a positive value of i?y/aT (0.1 x 
as shown by the broken line in Figure 4. 

In order to study the effect of the surface tension temperature coefficient dy/aT on the 
kg sC2 "C-' )was used, 

. . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  . ' . :::/ . . . . . . . . . . . . . . . . . . . . . . . .  \ \  9 o o y  :::::: : : : : : , : : : : , : : ; .  : / 

1 

u 
- 1.0 m/sec 

1.0 M M  

Figure 6. Temperature and velocity fields for a non-deformable weld pool with a dy/aTof -0.35 x 
value and location of the maximum velocity are close to those in Figure 5 

kgs-2 "C-I. The 

- 2.0 m / 5 x  

u 
1.0 M M  

Figure 7 (a) 
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0.5 rnm 

- 2.0 m/sec  

GRID SYSTEM F O R  WELDING P R O C E S S  

Figure 7. Calculated result for a deformable weld pool with a ay/aT of 0 .10~  kgs-'"C-'. . (a) temperature and 
velocity fields; (b) velocity field enlarged; (c) a portion of orthogonal curvilinear grid mesh for computation. The maximum 

velocity, 2.3 ms-' ,  is located along the centreline at about 1 mm below the free surface 
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The calculated temperature and velocity fields due to the Marangoni convection with 
ay/aT=Ol x kgs-'"C-' are shown in Figure 7(a). An enlarged view of the velocity field is 
shown in Figure 7(b). A portion of the grid mesh in its final form is shown in Figure 7(c). It should 
be pointed out first that since the velocity vectors (V) are plotted at  the positions of the dots in the 
grid mesh shown in Figure 7(c) and since the first column of dots is located not exactly along the 
centreline but slightly off it, the q-components of the velocity vectors near the top of this column 
are not zero. This should not be taken as failure to obey the boundary condition of u = 0 at the 
centreline. The fact that the fastest surface flow is closer to the centreline than to the edge of the 
weld pool explains the non-zero u mentioned above. 

As shown in Figure 7(a), the centre of the weld pool surface is now slightly elevated while the 
outer portion is slightly depressed, i.e. the weld pool deformation is opposite to that for the 
Marangoni convection with ay/dT<O (Figure 5(a)). This weld pool deformation is believed to be a 
result of the radially inward Marangoni convection induced by the positive value of ay/dT. 

As can also be seen by comparing Figure 7(a) with Figure 5(a), the pool depth is significantly 
greater with ay/dT>O. This is because the liquid metal at the free surface flows radially inwards to 
right under the arc, picks up the heat from the arc and then delivers the heat to the bottom of the 
pool. Consequently, the depth of the pool increases significantly. 

Again, in order to see the effect of weld pool surface deformation on heat transfer and fluid flow 
in the weld pool, the temperature and velocity fields in a similar weld pool but with a non- 
deformable surface are shown in Figure 8. These fields can be compared with those shown 
previously in Figure 7(a). In both cases the axially downward velocities along the centreline of the 
weld pool decay as one moves away from the centreline. However, in the case of the deformed weld 
pool (Figure 7(a)) this decay is significantly more rapid. As a result, the isotherms in the deformed 
weld pool are pushed downwards almost only at the centreline, while those in the underformed 
weld pool are pushed downwards both at and in the vicinity of the centreline. In fact, the pool is 
about 14% deeper in the latter, suggesting that the pool depth can be significantly overestimated if 
the pool surface is assumed flat and non-deformable. 

~- 2.0 m/sec 

u 
1 . 0  M M  

Figure 8. Temperature and velocity fields for a non-deformable weld pool with a dy/aTof 0.10 x 
value and location of the maximum velocity are close to those in Figure 7. 

kgs-20C-' .  The 
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CONCLUSIONS 

A steady-state two-dimensional model of heat transfer and fluid flow has been developed to 
describe the Marangoni convection in stationary weld pools. The present model differs from 
previous models in that the pool surface is unknown and is calculated with the help of orthogonal 
curvilinear co-ordinates. 

The model agrees very well with the asymptotic solution of Sen and David34 for Marangoni- 
convection-induced free surface geometry. 

When the surface tension temperature coefficient ay/aT is negative, Marangoni convection is 
radially outwards, and the centre of the pool surface is depressed while the outer portion of the 
pool surface is elevated. When ay/dT is positive, the reverse is true. 

In the case of a positive ay/aT, the pool depth can be significantly overestimated if the pool 
surface is assumed flat. 
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